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Ionization of atomic hydrogen in strong infrared laser fields

Alexei N. Grum-Grzhimailo,* Brant Abeln,† Klaus Bartschat,‡ and Daniel Weflen§

Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311, USA

Timothy Urness‖
Department of Mathematics and Computer Science, Drake University, Des Moines, Iowa 50311, USA

(Received 27 January 2010; published 14 April 2010)

We have used the matrix iteration method of Nurhuda and Faisal [Phys. Rev. A 60, 3125 (1999)] to treat
ionization of atomic hydrogen by a strong laser pulse. After testing our predictions against a variety of previous
calculations, we present ejected-electron spectra as well as angular distributions for few-cycle infrared laser
pulses with peak intensities of up to 1015 W/cm2. It is shown that the convergence of the results with the number
of partial waves is a serious issue, which can be managed in a satisfactory way by using the velocity form of the
electric dipole operator in connection with an efficient time-propagation scheme.
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I. INTRODUCTION

Atomic ionization in short-pulse high-intensity infrared
laser fields has attracted significant interest from both exper-
imentalists and theorists alike for about three decades, after
pioneering articles on above-threshold ionization (ATI) and
high-order harmonic generation (HHG) appeared in the late
1970s and 1980s. More recent studies include, for example,
experiments by Rudenko et al. [1] and by Maharajan et al.
[2] and theoretical investigations by Chen et al. [3] and by
Madronero and Piraux [4].

In principle, a straightforward method to describe such
processes is the numerical solution of the time-dependent
Schrödinger equation (TDSE). Even with the dramatic in-
crease in computational power over the past years, however,
such an effectively exact solution continues to present sig-
nificant challenges for long wavelengths, even in the dipole
approximation for the laser-atom interaction and for the hy-
drogen atom with exactly known bound and continuum wave
functions. A partial-wave close-coupling approach extensively
used to treat this problem [5–11] faces serious difficulties
because of the large ponderomotive energy and the number of
partial waves that need to be coupled to get converged results.
These difficulties can potentially also cause problems for the
partial-wave expansion methods extended to photoionization
of two-electron and even many-electron atoms [12–14] and
molecules [15].

It is particularly difficult to obtain the angular distribution
of the photoelectrons and other angle-differential observables
that contain interference terms between different partial waves.
Experience shows that it is nearly impossible for sufficiently
high intensities to obtain convergence when employing the
familiar, and easily usable, length form of the electric dipole
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operator. The latter is dominated by larger nuclear-electron
distances in comparison with the velocity form. Therefore,
employing the velocity form shows better promise with respect
to obtaining converged results with a relatively small number
of partial waves included in the close-coupling expansion of
the total wave function. This fact was discussed and illustrated
by Cormier and Lambropoulos [10]. However, the derivative
operator appearing in this form presents new challenges in
the time propagation of the wave function. These and other
difficulties of solving the TDSE for a particle in a strong
laser field were discussed in detail by Nurhuda and Faisal [16]
and by Madronero and Piraux [4], and they are the principal
motivation for the ongoing search for better algorithms for this
problem.

The purpose of the present article, therefore, is to further
analyze the capabilities of the promising matrix iterative
method of Nurhuda and Faisal [16] that, to our knowledge,
has not been used during the past decade for solving the
TDSE. In Sec. II we describe the method (Sec. II A) and
our implementation for the problem of interest, including
the practical algorithm (Sec. II B). In addition, we introduce
the observables of interest (Sec. II C), specifically the spectra
and the angular distributions of photoelectrons produced in
ionization of the hydrogen atom by long-wavelength laser
pulses with different durations and intensities. Our results are
presented and discussed in Sec. III, and we finish with a brief
conclusion. Unless specified otherwise, atomic units are used
throughout this article.

II. NUMERICAL METHOD

A. The matrix iterative approach

We use the matrix iterative method described in general
terms by Nurhuda and Faisal [16] to solve the TDSE. To outline
the approach in more detail, we begin by expanding the wave
function of a particle characterized by the radius vector r =
{r, ϑ, ϕ} at time t as

�(r, t) =
∑

�

b�(r, t)Y�0(�), � = {ϑ, ϕ}. (1)
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Assuming axial symmetry of the process with respect to the
quantization z axis, only the spherical harmonics Y�m(�) with
m = 0 are left. Inserting Eq. (1) into the well-known Crank-
Nicholson approximation of the short-time propagator

�(r, t + �t) ≈ 1 − iĤ �t
2

1 + iĤ �t
2

�(r, t) (2)

yields

∑
�

b�(r, t + �t)Y�0(�) = 1 − iĤ �t
2

1 + iĤ �t
2

�(r, t), (3)

where Ĥ is the full Hamiltonian. Multiplying both sides of
Eq. (3) by Y ∗

�′0(�), taking the integral over �, and using the
orthogonality of the spherical harmonics gives

b�′(r, t + �t) =
∫

Y ∗
�′0(�)

1 − iĤ �t
2

1 + iĤ �t
2

�(r, t) d�. (4)

In order to handle the right-hand side of Eq. (4), we
introduce the Dirac δ function in the form

δ(� − �′) =
∑

k

Yk0(�)Y ∗
k0(�′) (5)

and make the transformations(
1 − iĤ

�t

2

)
�(r, t) =

(
1 − iĤ

�t

2

)∑
�

b�(r, t)Y�0(�)

=
∫ ∑

k

Yk0(�)Y ∗
k0(�′)

(
1 − iĤ

�t

2

)

×
∑

�

b�(r, t)Y�0(�′) d�′

≡
∑

k

φk(r, t)Yk0(�), (6)

where

φk(r, t) = bk(r, t) − i
∑

�

〈Yk0|Ĥ |Y�0〉r
�t

2
b�(r, t). (7)

Here 〈 〉r denotes the integration over the solid angle �, thereby
leaving r as the argument. Thus we have from Eqs. (4) and (6)

b�′ (r, t + �t) =
∑

k

〈Y�′0|
(

1 + iĤ
�t

2

)−1

|Yk0〉rφk(r, t).

(8)

We now decompose the operator in Eq. (8) as

1 + iĤ
�t

2
= ÔD + ÔND, (9)

where ÔD is the diagonal part and ÔND is the nondiagonal part
with matrix elements

Ô�
D = 〈Y�0|1 + iĤ

�t

2
|Y�0〉r (10)

and

Ô�k
ND =

{
〈Y�0|1 + iĤ �t

2 |Yk0〉r � �= k,

0 � = k,
(11)

respectively. Expanding

(ÔD + ÔND)−1 = (
1 + Ô−1

D ÔND
)−1

Ô−1
D

= (
1 − Ô−1

D ÔND + Ô−1
D ÔNDÔ−1

D ÔND − · · ·)
× Ô−1

D (12)

and substituting this expansion into Eq. (8) yields

b�′(r, t + �t) =
∑

v

b
(v)
�′ (r, t + �t), (13)

where

b
(v)
�′ (r, t + �t)

= (−1)v
∑

k

〈Y ∗
�′0|

(
Ô−1

D ÔND
)v

Ô−1
D |Yk0〉rφk(r, t). (14)

The first term (v = 0) is

b
(0)
�′ (r, t + �t) = 1

Ô�′
D

φ�′(r, t), (15)

since ÔD is diagonal. The second term can be evaluated after
formally inserting two unitary operators but then use again the
fact that ÔD is diagonal. The result is

b
(1)
�′ (r, t + �t) =

∑
k

〈Y�′0| − Ô−1
D ÔNDÔ−1

D |Yk0〉rφk(r, t)

= −1

Ô�′
D

∑
k

〈Y�′0|ÔND|Yk0〉r 1

Ôk
D

φk(r, t)

= −1

Ô�′
D

∑
k

Ô�′k
NDb

(0)
k (r, t + �t). (16)

Proceeding further along this line, we finally obtain the
recursion relation (12) of Nurhuda and Faisal [16]

b
(v)
�′ (r, t + �t) = −1

Ô�′
D

∑
k

Ô�′k
NDb

(v−1)
k (r, t + �t), (17)

with the convergence condition that

γ =
∣∣∣∣∣ ÔND

ÔD

∣∣∣∣∣ < 1 (18)

for all relevant matrix elements.

B. Application: Electron in an electromagnetic field

We are interested in describing an electron in an electro-
magnetic field with the full Hamiltonian given by

Ĥ = −∇2

2
+ V (r) − i

c
A(t) · ∇, (19)

where V (r) is the static Coulomb potential while the vector po-
tential A(t) is related to the external electric field E(t) through

A(t) = −c

∫ t

−∞
E(t) dt, (20)

with c denoting the speed of light in vacuum. Note that we
omitted the term A2(t)/2 in (19), thus implying that the gauge
transformation

�(r, t) ⇒ exp

[
− i

2

∫ t

−∞
A2(t ′) dt ′

]
�(r, t) (21)
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has been performed [17]. We use the matrix iteration method
for the velocity form of the electric dipole operator and imply
a linearly polarized laser pulse, with the polarization direction
of the electric field defining the z axis. Subsequently we also
show some comparisons with results obtained in the length
form r · E(t) of the interaction, for which we used the method
described by Grum-Grzhimailo et al. [11].

We choose ÔD to contain the identity operator as well as
all the terms of the field-free Hamiltonian [the first two terms
in Eq. (19)] and ÔND to contain the third interaction term in
Eq. (19). This yields the matrix elements (10) and (11) as

Ô�
D = 1 + i

[
− 1

2r2

∂

∂r

(
r2 ∂

∂r

)
+ �(� + 1)

2r2
+ V (r)

]
�t

2
(22)

and

Ô�k
ND=Az(t)

c

�t

2
〈Y�0| ∂

∂z
|Yk0〉r=Az(t)

c

�t

2

[
∂

∂r
C�k + 1

r
C̃�k

]
,

(23)

where

C�k = k√
(2k + 1)(2k − 1)

δ�,k−1 + k + 1√
(2k + 3)(2k + 1)

δ�,k+1

(24)

and

C̃�k = k(k + 1)√
(2k + 1)(2k − 1)

δ�,k−1− k(k + 1)√
(2k + 3)(2k + 1)

δ�,k+1.

(25)

In order to carry out the algorithm, we introduce the
functions

a�(r, t) ≡ rb�(r, t), φ̄�(r, t) ≡ rφ�(r, t) (26)

and obtain from Eqs. (7), (22), and (23)

Ô�k
NDbk(r, t) = �t

2

Az(t)

c

[
∂

∂r
C�k + 1

r
X�k

]
ak(r, t) (27)

and

φ̄�(r, t) = a�(r, t) − i
�t

2

[−1

2

∂2

∂r2
+ �(� + 1)

2r2
+ V (r)

]
a�(r, t)

− Az(t)

c

�t

2

∑
k

[
∂

∂r
C�k + 1

r
X�k

]
ak(r, t), (28)

where X�k ≡ C̃�k − C�k .
The algorithm for the time propagation is then as follows.
(i) Having at time t the wave function �(r, t) and, hence,

the set of functions a�(r, t), find the functions φ̄�(r, t) from
Eq. (28). Usually only functions with a single value of � are
nonzero at t = 0. In our particular case, we start with the
hydrogen atom in the 1s ground state.

(ii) After writing Eq. (15) in the form[
1 + i

�t

2

(−1

2

∂2

∂r2
+ �(� + 1)

2r2
+ V (r)

)]
a

(0)
� (r, t + �t)

= φ̄�(r, t), (29)

calculate a
(0)
� (r, t + �t). To solve Eq. (29) we express the sec-

ond derivative through a three-point finite-difference formula

and then use the well-known backward substitution algorithm
for tridiagonal matrices [18]. While this finite-difference
method may not be as accurate as finite-element approaches
used, for example, in Refs. [4,10], it seems accurate enough
for our cases of interest and has an advantage when extending
the calculation to high ejected-electron energies (see later in
this article).

(iii) Using Eq. (27), find the function

ξ
(1)
� (r, t + �t) = −r

∑
k

Ô�k
ND

1

r
a

(0)
k (r, t + �t)

= �t

2

Az(t)

c

∑
k

(
∂

∂r
C�k + 1

r
X�k

)

× a
(0)
k (r, t + �t), (30)

which defines the right-hand side of Eq. (16).
(iv) From Eq. (16) written in a way identical to Eq. (29)

with the substitutions a
(0)
� (r, t + �t) → a

(1)
� (r, t + �t) and

φ̄(r, t) → ξ
(1)
� (r, t + �t), find the functions a

(1)
� (r, t + �t).

(v) Repeat Eq. (30) with a
(0)
k (r, t + �t) → a

(1)
k (r, t + �t)

to obtain ξ
(2)
� (r, t + �t) and use it in step (iv) to solve for

a
(2)
� (r, t + �t). The iterations proceed until convergence of

expansion (13) is reached. Once the set of a�(r, t + �t) has
been determined to acceptable accuracy, we can go back to (i)
and continue to the next time step.

As pointed out by Nurhuda and Faisal [16], the number
of iterations can be adjusted at every time step based on the
behavior of the norm of the total wave function, and one can
try to optimize the length of the time step and the number of
iterations. In our applications, we always used five iterations
and checked that our fixed time step was sufficiently small to
keep the deviation of the norm from unity to less than 10−6.
Also, we used a large radial mesh to essentially keep the entire
wave function in the box. The very small part that might escape
and would then be reflected from the boundary was absorbed
by a standard imaginary gobbler potential. Although some of
these precautions may seem computationally expensive, they
ensure numerical stability of the results. Runs for the cases
shown in Sec. III typically took from a few hours to a few
days on a single 2-GHz processor of a multinode cluster. We
are in the process of parallelizing the code to reduce the wall
time needed to get results, but the current situation is already
acceptable.

C. Observables

We are interested in the ejected-electron spectrum, i.e., the
angle-integrated probability density for finding a photoelec-
tron with energy ε = k2/2, as well as the angle-differential
probability for such an electron being emitted into the direction
specified by the solid-angle element �k = {,�}. In order to
define these quantities, we expand the eigenfunction of the
field-free Hamiltonian for the photoelectron propagating with
linear momentum k in partial waves as

�−
k (r) = 4π

r

∑
�m

i�e−iδε�Pε�(r)Y ∗
�m(,�)Y�m(ϑ, ϕ), (31)
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For our case of the atomic hydrogen target, Pε�(r) is the energy-
normalized regular Coulomb function while δε� = arg �(� +
1 − i/k) is the Coulomb phase.

The probability density for finding the photoelectron with
energy ε emitted in the direction �k ≡ (,�) is given by

d2P

dεd�k
= lim

t→∞ |〈�−
k (r)|�(r, t)〉|2

= Pε

4π

[
1 +

∑
L>0

βL(ε)PL(cos )

]
. (32)

Here PL(cos ) is a standard Legendre polynomial and Pε is
the angle-integrated probability density (i.e., the photoelectron
energy spectrum),

Pε =
∫

d�k
d2P

dεd�k
. (33)

The anisotropy parameters, βL(ε) (subsequently we omit the
argument ε), are given by

βL = 1

Pε

∑
��′

i�
′−�ei(δε�−δε�′ )νL

��′Zε�Z
∗
ε�′ , (34)

where νL
��′ = νL

�′� = √
(2� + 1)(2�′ + 1)(�0, �′0|L0) with

(�0, �′0|L0) denoting a Clebsch-Gordan coefficient and

Zε� = lim
t→∞

∫ ∞

0
Pε�(r)a�(r, t) dr, (35)

so that

Pε =
∑

�

|Zε�|2. (36)

The electron spectrum and the anisotropy parameters are
calculated from the wave function at the end of the pulse and
hence do not contain any information about the time when
the electron was ejected. In order to get some information
about this time dependence, we also show results for the
electron density ρ(r, t) ≡ �∗(r, t)�(r, t) at various times t

during the pulse. This function shows when and where the
electron might be moving, but it does not contain information
about its energy. Hence, the two sets of functions contain
complimentary information.

III. RESULTS AND DISCUSSION

Figure 1 shows the electric field E(t) and the vector potential
A(t) of a simple test case, for which the ejected-electron
spectrum was also presented by Madronero and Piraux [4].
Specifically, a four-cycle laser pulse with a sin2 envelope, a
peak intensity of 1 × 1015 W/cm2, and a central frequency
of 0.3 a.u. (wavelength 152 nm) is used to ionize atomic
hydrogen. This is essentially a two-photon process, and for this
field strength and pulse length we see the main peak in Fig. 2
as well as one clearly visible above-threshold peak around
an energy of 0.3 a.u., followed by another small maximum
between 0.5 and 0.6 a.u.

This is not a particularly challenging numerical problem,
and hence we get good agreement between the results obtained
in the length and the velocity forms of the electric dipole
operator. Also, although we included angular momenta of up
to �max = 20 for both forms, we could get converged results
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FIG. 1. (Color online) Electric field E(t) and vector potential
−A(t)/c for a four-cycle laser pulse with a sin2 envelope for E(t), a
peak intensity of 1 × 1015 W/cm2, and a central frequency of 0.3 a.u.,
corresponding to a wavelength of 152 nm.

with significantly less in the velocity form (see later in this
article).

Even for this rather simple problem, however, it is worth
pointing out two interesting features. (i) The results exhibit a
significant dependence on whether the simple sin2 envelope
function is used for the vector potential A(t) or for the electric
field E(t). (ii) When the vector potential is described by the
sin2 envelope, the first peak is at the expected energy of just
below 0.02 a.u. (in this case the ponderomotive energy is about
0.08 a.u.), but the subsequent peaks are not separated by a
multiple of the photon energy. [Especially the second, though
very small, ATI peak is clearly below 0.6 a.u.] Even more
remarkable, however, is the fact that, if the sin2 envelope is
used for the electric field, the first peak is clearly shifted to
lower ejected-electron energies.

These results are due to the fact that the pulse is very short
(only four cycles), and hence the derivative of the envelope
function in E(t) = −∂A(t)/c∂t is by no means negligible.
Furthermore, the Keldysh parameter

√
Ip/2Up, where Ip is

the ionization energy and Up = I/4ω2 is the ponderomotive
energy for a laser intensity I and angular frequency ω, is less
than 2 for this case, thus suggesting that this is no longer a
simple multiphoton absorption process.

In addition to the spectrum, we also present our results
for various angular distribution parameters for this case. We
see significantly nonzero β parameters, with both even and
odd indices. The nonvanishing values β1, β3, β5, . . . indicate
a significant dependence of the angular distribution on the
carrier envelope phase, once again due to the strength and the
short length of the pulse. We show sample angular distributions
for fixed ejected-electron energies later in this article, as well
as snapshots of the ejected-electron density as a function
of time.

To check our code for more difficult situations, we then
ran the cases presented in Fig. 10 of Chen et al. [3]. The
electric field and the vector potential for one of the cases,
a 20-cycle laser pulse with a sin2 envelope, a peak intensity
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FIG. 2. (Color online) Photoelectron spectrum (top) and several
asymmetry parameters (bottom) for ionization of atomic hydrogen
in a four-cycle laser pulse with a sin2 envelope, a peak intensity of
1 × 1015 W/cm2, and a central frequency of 0.3 a.u., corresponding
to a wavelength of 152 nm. The calculations were performed with
angular momenta up to �max = 20 in the length (L) and velocity (V )
form of the electric dipole operator. Either the electric field (E) or the
vector potential (A) were set to the sin2 envelope for the spectrum
and the parameter β2. For all other parameters, the sin2 envelope was
used for the vector potential (see text for details).

of 1 × 1014 W/cm2, and a central frequency of 0.114 a.u.
(wavelength of 390 nm) are shown in Fig. 3.

Figure 4 shows the corresponding results for the spectrum
and the angular distribution parameters β1 and β2. This
is a more demanding problem, but it is still possible to
obtain converged results for the ejected-electron spectrum with
the length form of the electric dipole operator in the low-
energy regime shown in these graphs, provided partial-wave
contributions up to �max ≈ 60 are taken into account.

The convergence in the angular distribution parameters (we
only show β2 and β1 in the figures) is much less satisfactory in
the length form. Not surprisingly, the biggest problems occur
at energies that only very few of the ejected electrons have.
Hence, this may not be too critical in practice, but it certainly
sends a warning sign.

Regarding the physical interpretation of the results, we
note that β1 is very small in the vicinity of the maxima in
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FIG. 3. (Color online) Electric field E(t) and vector potential
−A(t)/c for a 20-cycle laser pulse with a sin2 envelope for E(t), a peak
intensity of 1 × 1014 W/cm2, and a central frequency of 0.114 a.u.,
corresponding to a wavelength of 390 nm.

the ejected-electron spectrum. This suggests that the angular
distribution is more or less independent of the carrier envelope
phase, which is not surprising given the rather long pulse.
Both β2 and β1 exhibit rapid variations near the minima in the
energy distribution, with the results obtained in the velocity
form of the dipole operator being very stable with respect to
increasing the number of partial waves. Hence we believe that
these results are well converged.

We now move on to a serious challenge, namely, ionization
by a strong infrared laser pulse. Figure 5 shows our results for
three peak intensities, 4 × 1014 W/cm2, 6 × 1014 W/cm2, and
1 × 1015 W/cm2 (bottom), for a 10-cycle laser pulse with a
central frequency of 0.057 a.u., corresponding to a wavelength
of 780 nm. Results for the lower two intensities were also
presented by Madronero and Piraux [4]. In order to compare
directly with their results, we used a sin2 envelope for the
vector potential rather than the electric field.

Qualitatively we obtain very good agreement with their
predictions, especially in the low-energy regime. We note,
however, that the results shown in the insets of their Fig. 5
exhibit some rapid oscillations that seem to be of numerical
rather than physical nature. With our radial mesh extending
up to 3600 atomic units, we are essentially free of reflec-
tions, and those that might become a problem are easily
eliminated by our gobbler starting at 3200 atomic units.
However, the norm of our wave functions differs from unity
by only about one part in a million at the end of the time
propagation, thus indicating that the gobbler regime is hardly
reached.

We note an excellent convergence with the number of partial
waves. This issue was addressed by Madronero and Piraux as
well, but they were not sure whether the differences between
two sets of results presented in their Fig. 6 were due to the
number of partial waves, the number of basis functions, or
both. Looking at our results, we obtain very good agreement
with those of Madronero and Piraux, already with “only” 50
partial waves in the expansion of the wave function. This
finding on the convergence also holds for the highest intensity
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FIG. 4. (Color online) Photoelectron spectrum (top) and asymme-
try parameters β2 (center) and β1 (bottom) for ionization of atomic
hydrogen in a 20-cycle laser pulse with a sin2 envelope for the electric
field, a peak intensity of 1 × 1014 W/cm2, and a central frequency of
0.114 a.u., corresponding to a wavelength of 390 nm. The calculations
were performed with the length (L) and velocity (V ) forms of the
electric dipole operator for angular momenta up to the values �max

indicated in the parentheses.

of 1 × 1015 W/cm2 shown in the bottom panel of Fig. 5. This
might seem surprising given the large ponderomotive energy
of nearly 60 eV, which suggests that 40 photons would need to
be absorbed for an electron to be emitted at all. The reason that
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FIG. 5. (Color online) Photoelectron spectrum for ionization of
atomic hydrogen in a 10-cycle laser pulse with a sin2 envelope for
the vector potential, peak intensities of 4 × 1014 W/cm2 (top), 6 ×
1014 W/cm2 (center), and 1 × 1015 W/cm2 (bottom), and a central
frequency of 0.057 a.u., corresponding to a wavelength of 780 nm.
The calculations were performed with the velocity form of the electric
dipole operator for angular momenta up to �max = 70 (solid line)
and �max = 50 (dots). The inserts show the low-energy regime on an
extended scale.

one can still get converged results is simply the low probability
of nearly always increasing the electron’s angular momentum.
Instead, the quantum mechanical selection rule of �� = ±1
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FIG. 6. (Color online) Photoelectron spectrum for ionization of
atomic hydrogen in a 10-cycle laser pulse with a sin2 envelope
for the electric field, peak intensities of 4 × 1014 W/cm2 (top),
6 × 1014 W/cm2 (center), and 1 × 1015 W/cm2 (bottom), and a
central frequency of 0.057 a.u., corresponding to a wavelength of
780 nm. The calculations were performed with the velocity form of
the electric dipole operator for angular momenta up to �max = 70, 40,
and 20. The results for �max = 40(20) were multiplied by 0.1(10) to
make them distinguishable from the �max = 70 results.

allows for a decrease as well, and hence it is possible to neglect
the very high angular momenta and still obtain converged
results as long as the velocity form of the dipole operator is

being used. (See also the illustrations given by Cormier and
Lambropoulos [10].) In other words, the lack of convergence
in the length form is not simply due to the number of photons
that need to be absorbed. Note that there are many irregular
structures in the ejected-electron spectrum, but we believe that
the results presented here are entirely physical.

Finally, we employed our code to investigate the spectrum
up to even higher energies. Using a finite-difference rather than
a finite-element method to represent the Hamiltonian, this is
straightforward in the present approach, since we do not have
to increase and then check the convergence with the number
of basis functions. Figure 6 shows our results for electron
energies up to 3 a.u. (about 80 eV). Here we chose the sin2

envelope for the electric field rather than the vector potential.
Although the details are not shown, we note that once again it
matters whether this simple envelope function is used for A(t)
or E(t), and hence it will likely be very important to know the
details of the pulse to a high degree of accuracy if a meaningful
comparison between experiment and theory is ever going to
be made for these situations.

Regarding the partial-wave convergence of the results, note
that we can already get a very clear picture of the physics with
only �max = 20, that is, far less than the number of photons
required to push the electron out. It is interesting that the
complicated structure in the emission spectrum becomes more
regular with increasing electron energy, which is clearly visible
for the lower peak intensities of 4 × 1014 W/cm2 (top) and
6 × 1014 W/cm2, respectively. For the highest peak intensity
of 1 × 1015 W/cm2, the spectrum over the entire energy range
presented here remains complex, with the amplitude of the
oscillations changing significantly with the ejected-electron
energy. While we believe that these results are physical,
cross-checks by other theoretical methods and certainly by
experiment seem highly desirable.

We finish this article by plotting the angular distributions for
electrons of a fixed energy, as calculated from the β parameters
defined in Eq. (34). Figures 7 and 8 exhibit our results for
selected energy ranges near some peaks in Figs. 2 and 4. Not
surprisingly, most of the emission occurs along the polarization
axis (note the different scales on the axes). For the longer
and weaker pulse of Fig. 3, the angular distribution depicted
in Fig. 7 is very symmetric, at least near the maximum of
the emission. This indicates that the carrier phase envelope is
not very important and, consequently, one would not expect
a significant forward-backward asymmetry in the electron
emission.

For the shorter and more intense pulse of Fig. 1, on the other
hand, the angular distribution of Fig. 8 shows a clear forward-
backward asymmetry. With a stabilized carrier envelope phase,
one should be able to measure this asymmetry, even if electrons
with a range of energies are detected. It is also worth noting that
the two sides of the peak show an opposite asymmetry. Conse-
quently, it may be advisable to experimentally stay on one side
of a given peak in order to maximize the asymmetry signal.

Finally, Fig. 9 illustrates the electron density at a few
times during the pulse. One can clearly see how the electron
probability distribution is affected by the laser and how the
very concentrated initial distribution spreads out. Note the
cylindrical symmetry around the long-dashed axis due to
the linear polarization of the laser light. We produced a movie
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FIG. 7. (Color online) Angular distribution of electrons ejected
with various energies (marked in the legend) by a 20-cycle laser pulse
with a sin2 envelope for E(t), a peak intensity of 1 × 1014 W/cm2,
and a central frequency of 0.114 a.u., corresponding to a wavelength
of 390 nm. The double arrow marks the linear polarization direction
of the laser. Note the stretched scale on the axis perpendicular to the
laser polarization. The distance from the origin is proportional to the
size of the signal.

of this particular case that will be made available to interested
readers upon request.
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FIG. 8. (Color online) Angular distribution of electrons ejected
with various energies (marked in the legend) by a four-cycle laser
pulse with a sin2 envelope for E(t), a peak intensity of 1 × 1015 W/

cm2, and a central frequency of 0.3 a.u., corresponding to a
wavelength of 152 nm. The double arrow marks the linear polar-
ization direction of the laser. Note the stretched scale on the axis
perpendicular to the laser polarization. The distance from the origin
is proportional to the size of the signal.
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FIG. 9. (Color online) Electric field E(t) and vector potential
−A(t)/c for a four-cycle laser pulse with a sin2 envelope for E(t), a
peak intensity of 1 × 1015 W/cm2, and a central frequency of 0.3 a.u.,
corresponding to a wavelength of 152 nm. This is the same as Fig. 1,
with additional arrows marking the times for which the electron
density is shown in the panels.

IV. CONCLUSIONS

Our implementation of the matrix iteration method of
Nurhuda and Faisal [16] allows for the calculation of numer-
ically stable results for the interaction of a short-pulse laser
with the hydrogen atom. Although the principle of attacking
this problem is well known, it remains a challenge for the
case of intense infrared radiation, due to the large number
of photons that need to be absorbed for the electron to be
ionized.
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After confirming results from previous work, we
extended the parameter space into previously unchartered
territory, where experimental investigations are currently in
progress [19]. Employing the velocity form of the electric
dipole operator and a large radial mesh to contain the
wave function, we were indeed able to obtain converged
results.

In addition to angle-integrated observables such as the
ejected-electron spectrum, we made predictions for the angular
distribution of electrons with a fixed energy. Finally, we
visualized the time dependence of the process by plotting and
animating the electron probability density.

The successful implementation of the matrix iteration
method for the hydrogen atom interacting with strong infrared
laser pulses opens the door to applications of the method to
other physical problems, including those with more than one
particle.
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